CCQTA BITUMEN DEWATERING AND VOLUMETRIC CORRECTION

COQA San Antonio 2016
Agenda

- Background
- Blend Study
 - Samples
 - Blends
 - Data Vetting
 - Correction Factor
 - Before – After
 - Conclusions
- Next Steps
Background

- Development of a standard dewatering and solids removal procedure to prepare bitumen for analysis.
 - Stems from AB Energy Bitumen Assay Program
 - Data and results provided to CCQTA to report findings

- Development of improved blend prediction calculations
 - AB bitumen outside the limits of API 12.3
 - API 12.3 known to be inadequate from practical experience in the Western Canadian Sedimentary Basin
 - CCQTA project initiated to perform blend study
4 Blend Study
Samples

- Clean bitumen samples provided by AB Energy
 - Cover the range of density found in Alberta (6 – 12 °API)
 - Cover the major regions of production (Athabasca, Cold Lake, Peace River)

- Diluent samples provided by CQI
 - Custom blended diluents to cover a range of densities (60 – 74 °API)
 - One super light diluent (83 °API)
 - One blend of sweet synthetic crude
Blends

- Final blend matrix included
 - 4 different bitumen samples
 - 6 different diluent samples
 - 7 different diluent concentration levels

= 168 individual blends
Data Vetting

- Initially attempting to observe extremely small variance in density measurements
- Numerous re-blending and measurement before acceptance based on observed trends, spacing, linearity, etc.
Correction Factor

Rather than establishing a new equation, the simplest solution was to modify API 12.3 with a correction factor.

API 12.3 was consistently under predicting blend density so a correction factor made sense.

\[
S_{API\ 12.3} = 4.86 \times 10^{-8} C (100 - C)^{0.819} G^{2.28}
\]

\[
S_{AB\ Bitumen} = 5.73 \times 10^{-8} C (100 - C)^{0.819} G^{2.28}
\]
Before

1020 Bitumen

API 12.3 Calculated Density vs. Measured Density

- Diluent A \(\approx 741 \text{ kg/m}^3 \)
- Diluent B \(\approx 724 \text{ kg/m}^3 \)
- Diluent C \(\approx 708 \text{ kg/m}^3 \)
- Diluent D \(\approx 690 \text{ kg/m}^3 \)
- Super Light \(\approx 663 \text{ kg/m}^3 \)
- Sweet Synthetic \(\approx 863 \text{ kg/m}^3 \)
After

API 12.3 Calculated Density with Correction Factor

Measured Density

1020 Bitumen

Diluent A ≈ 741 kg/m³
Diluent B ≈ 724 kg/m³
Diluent C ≈ 708 kg/m³
Diluent D ≈ 690 kg/m³
Super Light ≈ 663 kg/m³
Sweet Synthetic ≈ 863 kg/m³
Conclusions

- Prediction calculation precision improved when using the correction factor
- Recommend these findings be made available for public access
Next Steps

- Final report in completion/review stage before posting to CCQTA website for open access
- Establish communication with API
 - Obtain API dataset and review as a whole
 - Best method to publicize (amendment, extension, exception…?)
- Viscosity blend model