Crude Oil Quality Management

• From the Reservoir to the Refinery

Presented at Crude Oil Quality Conference

Waynn Morgan and Mark Williams

November 7, 2013
Agenda

• Definition of quality and quality management
• Challenges
 – Reservoir & Upstream quality management
 – Midstream quality management
 – Refinery quality management
• Case histories
• Summary
Definition of Quality

• A perceptual, conditional and somewhat subjective attribute

• Understood differently across the crude oil supply chain
Quality Measurements

Specification Quality
How does the crude from one supplier compare to the crude of another supplier; does the crude meet the requirements for the refining process?

Conformance quality
Was the crude oil managed properly throughout the crude oil supply chain, with an understanding of the downstream implications of each upstream action?

Supply Quality
Is the supply of the crude oil from a sustainable, reliable supply?

Economic Quality
Are the operations and product providing a reasonable and maximum return on investment?
Quality Concerns

• Who pays the price / cost of quality?

• What standards have to be met?

• How can these standards be met and profitability be maintained or increased? (Economic quality / quality of earnings)

• What requirements need to be put into place?

• How to make the problem go away?
Challenges in the Reservoir

- Organic Damage
 - Paraffin
 - Asphaltenes

- Inorganic Damage
 - Calcium Carbonate
 - Iron Sulfide

- Other Damage
 - Emulsion
 - Acid Sludge
 - Oil-wet Solids
 - Water Blockage
Typical treating requirements to achieve saleable oil and “clean” water:

• **Oil**
 – Retention time
 – Specialty chemicals
 – Heat to accelerate treatment
 – Adequate mixing
 – Diluent for viscosity, salt, and TAN reduction
 – Off-spec processing

• **Water**
 – Retention time
 – Specialty chemicals
 – Heat to accelerate treatment
 – Adequate mixing
 – Multiple chemical types to facilitate separation
 – Solids handling capabilities
 – Sophisticated equipment to achieve high purity
 – Disposal/source issues
Challenges in Heavy Oil Quality Management

- Emulsions
- High solids
 - 500-700 ptb
 - Organic >> Inorganic
- Crude compatibility > asphaltene instability
 - During blending for viscosity reduction
 - During blending to dilute down contaminate levels, i.e. TAN
 - Heat exchanger fouling
- Metals
- Production methods
Challenges in Shale Oil Quality Management

- **Paraffin**
 - Deposition
 - Emulsion
 - Compatibility

- **H2S**

- **Solids**
 - 100-200 ptb
 - Well workovers, flowbacks, reprocessing

- Composition variability

- “Low-cost”/inexperienced producers
Crude Oil Quality Management
Midstream Challenges
Challenges of Midstream Quality Management

• Insuring the product transported meets the safe handling requirements without creating operational or reliability issues such as corrosion, flow restrictions or discharge limitations
Midstream Transport Challenges

- HS&E and Regulatory
- Equipment integrity and reliability
- Minimize transit times to maximize throughput
- Keep the reservoirs product moving to the refining supply
Transport Challenges – Quality of Earnings

• Focus on quality of earnings
• Impacted by:
 – Trucking – drive and demurrage times
 – Pipelines – barrels per hour / throughput
 – Railcar – turnaround time
 – Marine transport – demurrage
Crude Oil Transport – Quick Fix

• Not “Best in Class”
• Focused on “Make this problem go away!”
• Disadvantages
 – Treatment above stoichiometry to meet disport specification quality
 – Limitations on treatment options to meet the specifications
Midstream Quick Fixes or Emergencies

Typical response issues

- Pour point
- H_2S
- Water
- Bacteria
- Corrosion
- Odor control
- Flow improvement
- Pigging
Crude Oil Transport – Long Term Solutions
Refinery Processing Crude Oil Quality Challenges

• Obtain a sustainable feedstock

• Reduce the total cost of operation
 – Conformance
 – Economic quality model
 – Specification

• No “surprises”

• Establishing integrated quality management program with standards of operation
Case Study - 1
Supply Chain Quality Management – Paraffin Issue

• An upstream producer was having issues meeting BS&W specifications

• Cause: Paraffin accumulation
 – Decreased residence time
 – Incomplete emulsion resolution
 – Off specification oil (BS&W)

• Remedy: Eliminate paraffin bottom
 – Increase the residence time
 – Apply heat
 – Allow time for emulsion to resolve > BS&W spec met
Case Study - 1
Supply Chain Quality Management – Paraffin Issue

- Solution for upstream operation
 - Employ hot oil operation to fluidize the paraffin and blend in with other crude, for transport out of facility to midstream pipeline or storage facility.
Case Study - 1
Further Downstream Implications – Paraffin Issues

• The associated pipeline experienced an increased need for additional pigging

• The midstream storage facility saw an increase in the need to deal with tank bottoms
Case Study - 1
Further Downstream Implications – Paraffin Issues

• Marine ROB (remains on board) increase

• Rail ROB increase

• Corrosion of downstream vessels due to under-deposit corrosion

• Crude unit fouling issues in the refinery
Case Study - 1
Total Supply Chain Quality Management – The Solution

• Communications and understanding required of the entire supply chain

• Reduce the paraffin issue at the crude oil gathering facility with the use of chemical treatment

• Supplemental chemical treatment as needed throughout the supply chain

• Segregation of any additional settled paraffin from supply chain distribution channel and moved to location that can handle the paraffin without negative impact
Case Study - 2
Hydrogen sulfide and odor management

• Upstream operations had a requirement to meet 10 ppm H₂S in vapor space for deliveries to rail terminal

• Hydrogen sulfide specification quality met and railcars loaded

• Crude oil also emitted a foul odor
Case Study - 2
Hydrogen sulfide and odor management

- Crude arrived at disport with high H2S and had to be retreated
- Odor issues prevailed
- Root cause for changes was sulfate reducing bacteria in crude oil. Long term operation can result in railcar corrosion issues.
Case Study - 2
Implementing Corrective Actions – Option 1

• Utilize biocide for crude oil movements
 – Advantages
 • reduce risk of \(\text{H}_2\text{S} \) evolution during transport
 – Disadvantages
 • Can impact waste water from storage tanks and refinery that will result in a “bug kill” for the waste treatment plant; increase total cost of operation

• This process ignores the operation and mechanical options that may be viable
Case Study - 2
Long Term Solution for Terminal Operation – Option 2

• Use Total Systems Approach implementing chemical, mechanical and operational actions to solve problem

• Addresses the issues without further downstream implications
Total Systems Approach Solution

• Review and communicate quality issues throughout the supply chain through forums like COQA
• Form and get involved with teams that have the experience in all aspects of the supply chain operation to address the “Best in Class” solutions across the entire supply chain
• Standardize specifications
• Review the processes and determine areas of improvement
Summary

• There are four primary quality measurements.
 – Conformance, specification, supply and economic

• Although they may be defined a bit differently throughout the supply chain, they all focus on improving the quality of earnings, or economic quality

• Each segment of the supply chain has to maintain their own economic quality, which will drive the way that business is conducted.

• Cheap is not necessarily better for the downstream supply chain, but who really pays the cost of quality?
Crude Oil Quality Management

• From the Reservoir to the Refinery

Presented at Crude Oil Quality Conference

QUESTION & ANSWERS