Alberta Bitumen Assay Program
Overview & Technical Challenges
June 19, 2012

By: Charles Ward
Director of Measurement & Valuations,
Oil Sands Strategy and Operations Division, ADOE
Introduction

- Overview
 - Alberta Energy
 - Program importance and objectives
 - Overview of program design
 - Technical challenges
 - Sampling
 - Sample preparation
 - Assays
 - Implementation
 - Questions
Alberta Energy

- Steward of Alberta’s energy system for Albertans.
- Develop policy for and manage development of Alberta’s non-renewable resources and renewable energy.
- Grant industry the right to explore for and develop Alberta’s energy and mineral resources.
- Establish, administer and monitor the effectiveness of Alberta’s fiscal and royalty systems.
- Collect revenues from the development of Alberta’s energy and mineral resources on behalf of Albertans.
- Promote energy efficiency and conservation by Albertans and industry.
- Encourage investment in Alberta’s energy industry to create jobs and economic prosperity for Albertans.
Importance

- Majority of Oil Sands owned by Alberta
- Oil Sands Royalty (OSR): royalty is based on project revenue and costs (either 1-9% gross revenue or 25-40% net revenue).
- Royalty rates are based on WTI price.
- Royalty collected on bitumen.
- ~$5.6 billion in bitumen royalties for 2012-13 (over 50% of ALL royalty revenue – AE 2012 budget forecast).
Importance

- Over 50% of Alberta bitumen is not sold to third parties and considered non-arms length (NAL) transactions
- NAL bitumen is valued with a bitumen valuation methodology (BVM)
- BVM variable is bitumen density
Objectives

- Data may be used in a variety of ways:
 - Review of BVM
 - Enhances knowledge of oil sands resource
 - Advocacy – studies to show:
 - Carbon pathway
 - Other (i.e. CCQTA studies on corrosivity, processability, bitumen compatibility)
 - Assess value added and other strategies
 - Other general work

- Authority:
 - Section 52 of Mines and Minerals Act
Program Design

- **Program Overview:**
 - ADOE pays for sampling, preparation, and analyses
 - Approximately twenty OSR Projects representing over 90% of bitumen production
 - Mining and in-situ (thermal & cold) Projects included from all three oil sand areas
 - Two phases (phase 1 is 14 Projects)

- **Program Design:**
 - ADOE will retain an independent laboratory to collect and prepare samples, and perform laboratory tests
 - Assays conducted over two years (2012 to 2013)
 - Assay results will be shared with project operator
Assay Requirements

Table 1 - Bitumen Assay Program Test Matrix

<table>
<thead>
<tr>
<th>Property</th>
<th>Possible Test Method</th>
<th>Whole Crude</th>
<th>Naphtha (IBP-266°C)</th>
<th>Distillate (266-343°C)</th>
<th>LGO (343-399°C)</th>
<th>Atm. Resid (399°C+)</th>
<th>HGO (399-454°C)</th>
<th>VGO (454-527°C)</th>
<th>Residue (527+C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume and Mass % Yields</td>
<td>D2892, D5236</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Density (kg/m3)</td>
<td>D4052, D5002, D70</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sulphur, total (mass %)</td>
<td>D4294</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Total Acid Number (TAN)</td>
<td>D664, D664M</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MicroCarbon Residue (mass %)</td>
<td>D4530</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nitrogen, total (mass%)</td>
<td>D5762</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nitrogen, basic (mass%)</td>
<td>UOP 269</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Chlorides, Total Organics</td>
<td>D4929</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Viscosity at 3 temps (cSt)</td>
<td>D7042, D445, D4402, D341</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Simulated Distillation</td>
<td>D7169, D2887, D6352</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Metals (Iron, Vanadium, Nickel)</td>
<td>D5708B</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Asphaltenes, C5 & C7 Insoluble</td>
<td>D4055, D6560</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pour Point (°C)</td>
<td>D5835A, D97</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cloud Point (°C)</td>
<td>D2500</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Softening Point (°C)</td>
<td>D36</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PONA (mass %)</td>
<td>D2425, D2549, D1319</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Smoke Point (°C)</td>
<td>D1322</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aniline Point (°C)</td>
<td>D611</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cetane Index</td>
<td>D976</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>K Factor, UOP</td>
<td>UOP 375</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ash (mass %)</td>
<td>D482</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHNS (mass %)</td>
<td>D5291</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Water Content (mass%)</td>
<td>D6304, D4007</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Salt (mass%)</td>
<td>D3230</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note: Final list of tests are subject to adjustment.
Sampling Requirements

- Samples to be collected prior to diluent addition (PFT exception)

Sampling Issues:
- Sample points exist?
- Multiple samples (representative of project)
- Limit/eliminate loss of light ends
- Size of samples (high water content & Naphtha cut)
- Safety
Sample Preparation

- Samples prepared according to industry standard (same method – data integrity)

Preparation Issues

- Mining vs. In-situ
 - Dewatering: Toluene vs. Distillation (decanting?)
 - Loss of light ends (preparation)
 - Solids removal
 - Solvent removal

- Volume – size of sample for assay (naphtha cut)
Assay

- Tests conform to ASTM and other recognized standards

Assay Issues

- Standards applicable for bitumen
- Distillation (first cut volume)
 - Still availability
 - Consistent test methods between cuts
- Analysis of data – representative?
Implementation Requirements

- **Sampling Process**
 - Will respect operator environmental, health and safety requirements.
 - Laboratory will oversee sampling, conduct the testing and analysis work (data integrity).
 - ADOE staff will accompany during sample collection.
 - Schedule is adaptable (turnarounds, lab availability, other program impacts).

- **Future Sampling**
 - New projects.
 - Updates to ensure data is current.
 - Tests may be adjusted to ensure data is useful.
Implementation

- **Program Timeline**
 - ADOE is currently finalizing RFP contract.
 - Vendor for phase 1 was selected through competitive RFP process in Q2 of 2012.
 - Sample collection, preparation, and laboratory testing scheduled to commence in Q2/Q3 of 2012.

- **Oil Sands Operator Engagement**
 - Past - Original presentation in December 2011.
 - Ongoing - Individual technical sessions.
 - Future - access to project site for sample collection.
 - Future - comments and feedback on assay results.
Thank You