Challenges of Processing Heavy Canadian Crudes
Challenges of Processing Heavy Canadian Crudes

- Single & Two [2] Stage Desalting
 - Consequences of leaving salt in crude
- Solids in Canadian Crudes
 - Impact of solids
- Stream TAN’s
 - Why are they different?
- Corrosion Control Methods
 - Dilution
 - Chemicals
 - Metallurgy
- Processing Canadian Crude
 - Point of View
 - ID Effected Circuits
 - Requirements for TAN Corrosion
- Understanding 2nd & 3rd Order Effects
Challenges of Processing Heavy Canadian Crudes
Simplified Single Stage Desalters

90% Salt removal per stage. Therefore, a typical crude at 40 ptb would desalt to \((0.1) \times 40 = 4 \text{ ptb} \) in the 1st Stage.
Challenges of Processing Heavy Canadian Crudes

What does two Stage Desalting look like?

90% Salt removal per stage. Therefore, a typical crude at 40 pb would desalt to \((0.9) \times 40 = 4 \) pb in the 1st Stage, and \((0.9) \times (0.9) \times 40 = 0.4 \) pb at the end of the 2nd stage.
Challenges of Processing Heavy Canadian Crudes

Results of leaving salt in the desalted crude?

- Crude preheat train fouling
- Crude heater fouling
- Vacuum heater fouling
- Duty requirement to vaporize water in the desalted crude
- Caustic usage or increased overhead chlorides/corrosion
- Overhead neutralizer usage
Challenges of Processing Heavy Canadian Crudes

Results of leaving salt in the desalted crude?

- Coker impact
- Deactivation of Coker Naphtha HDS due to Si
- Chemical/silicone usage
- Units downstream of crude – HCl corrosion issues
Challenges of Processing Heavy Canadian Crudes

Impact of solids in the desalted crude and solids going to the WWTP

- Negative impact on dehydration
- Crude preheat train fouling
- Crude heater fouling
- Vacuum heater fouling
Impact of solids in the desalted crude and solids going to the WWTP

- Negative impact on downstream Hydrotreating reactors:
 - Increasing reactor pressure drop
 - Poisoning of reactor catalyst bed
- Stabilize emulsions and increase chemical demand
- Difficult to process solids after they are removed from the water
Challenges of Processing Heavy Canadian Crudes

- TAN stands for Total Acid Number
- TAN represent the amount of KOH in mg required to neutralize the acids in one gram of oil.
- ASTM D664 is the most common method for measuring TAN
 - Potentiometric titration in nonaqueous solution
 - The oil is dissolved in a special solvent mixture consisting of toluene and propanol containing enough water so that the pH electrode can measure a potential.
Challenges of Processing Heavy Canadian Crudes

What is Naphthenic Acid?

- Naphthenic acid represents a mixture of several cyclopentyl and cyclohexyl carboxylic acids.

- Presence in crude oil and are a major contaminant in the oil derived from tar sands.
- Crude oils with a high naphthenic acid content are referred to as “high TAN” crudes.
Challenges of Processing Heavy Canadian Crudes

Not All Streams are Created Equal

- Insight into corrosivity versus TAN for fractions and whole crudes is very difficult at best
- Many studies have been undertaken and are underway to characterize the content, structure and corrosivity of high acid crudes and fractions
- Efforts to characterize the content, chemical structure and corrosivity of acids in crudes and their fractions are challenged by:
 - Complexity of the acid mixtures
 - Scarcity of suitable analytical means
Another complication is determining the distribution of naphthenic acids in the different fractions:

- Typically done by analyzing the various fractions from the completed assay.
- Distillation conditions may expose the naphthenic acid in the higher boiling fractions to longer resident times at higher temperatures than what would be seen in the actual unit.
- Because of thermal decomposition, this can lead to lower acid numbers which can lead to underestimating the risk of corrosion.
Challenges of Processing Heavy Canadian Crudes

Corrosion Control Methods

➢ Dilution is the solution
 • Blending of lower TAN crudes with higher TAN crudes to meet the desired crude TAN
 • Relatively inexpensive
 • Can cause fouling and desalter problems
 • Not an option for refiner with a single source of crude
 • Blending to a “safe” TAN is an uncertain method of control. i.e. tank heel management

➢ Chemicals
 • Can reduce corrosion rates by as much as 90%
 • All major chemical companies have naphthenic acid corrosion inhibitors [Sulfur or phosphorous]
 • Expensive – Low capital expense, significant operating costs. Can be used as a gap closer to get system to material upgrade
Challenges of Processing Heavy Canadian Crudes

Corrosion Control Methods

Metallurgy
- Most effective long term solution to reducing corrosion rates
- Expensive – Large capital expense
- Unlikely the complete unit would be able to be completed at one time. Phased approach must likely
 - Material availability
 - Shut-down windows are short
 - Complexity
- Can pick the correct alloy for the desired circuit

Other Methods
- Decarboxylation
 - Expensive – significant operating costs
 - Low capital required
 - Generates CO/CO₂ which can lead to additional corrosion issues
Challenges of Processing Heavy Canadian Crudes

- TAN Originates in Crude
- Destroyed in either:
 - Hydrotreater
 - Desulfurizer
 - Coke Drums
 - FCCU
Challenges of Processing Heavy Canadian Crudes

Streams to Build TAN Capability = Stream with Temp > 450F

- #1/2 Fuel Oil
- LGO
- Crude/Vacuum
- LVGO/HVGO
- VTB
Challenges of Processing Heavy Canadian Crudes

- **Point Of View [POV]** - A brief, but detailed description [TAN, Sulfur, Solids, Salt and Gravity] of the charge for each crude unit.

- Limits of operation [TAN, Sulfur] for each circuit [i.e. Whole Crude, Fuel Oils, Heavy & Light Gas Oils, Vacuum Tower Bottoms] that will see TAN and which operates at > 450 °F.
Challenges of Processing Heavy Canadian Crudes

Listing of all equipment which operates at > 450 °F

- Drums
- Towers
- Separators
- Exchangers
- Piping [include control valves]
- Pumps
Challenges of Processing Heavy Canadian Crudes

Information needed to determine expected life and corrosion rates

- Line or equipment number
- Description
- Service
- Material of construction
- Maximum operating temperatures
- % sulfur range
- Expected TAN range
- Minimum recorded thickness
- Last Inspection date
- Expected corrosion rates
- Remaining Life of existing material
Challenges of Processing Heavy Canadian Crudes

<table>
<thead>
<tr>
<th>Line #</th>
<th>Description</th>
<th>Service</th>
<th>Material</th>
<th>Max. Operating Temp. °F</th>
<th>Sulfur (wt%)</th>
<th>Expected TAN @ 2</th>
<th>TAN Range @ 2</th>
<th>Corr. Rate [MPY] @ 2 TAN</th>
<th>Min. T Recorded</th>
<th>Min. T Required Trigger</th>
<th>Last Insp. Date</th>
<th>Lab Data Corr. Rate [MPY]</th>
<th>Rep. Corr. Rate [MPY]</th>
<th>Remaining Life Years Prior to Cond.</th>
<th>TML Retirement Date @ 2.0 TAN</th>
<th>Comments / Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>28217 EC</td>
<td>250-22 A/B inc 29022 EC</td>
<td>YTB</td>
<td>92 Cr.</td>
<td>642</td>
<td>5.00%</td>
<td>1.1 - 2.1</td>
<td>0.2 - 2.1</td>
<td>10</td>
<td>20</td>
<td>6.110</td>
<td>0.11</td>
<td>08/01/14</td>
<td>14.4</td>
<td>6.0</td>
<td>0.3</td>
<td>2/19/13</td>
</tr>
<tr>
<td>28124 A</td>
<td>259-4 to 259-7</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>5.320</td>
<td>0.29</td>
<td>04/01/14</td>
<td>5</td>
<td>19.1</td>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>28124 A</td>
<td>259-4 to 259-7</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>5.310</td>
<td>0.11</td>
<td>04/01/14</td>
<td>5</td>
<td>19.1</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>28124 A</td>
<td>259-4 to 259-7</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>5.220</td>
<td>0.16</td>
<td>04/01/14</td>
<td>5</td>
<td>19.1</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>28121 A</td>
<td>28124 to 259-11A/B</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>6.200</td>
<td>0.15</td>
<td>08/01/14</td>
<td>5</td>
<td>12.1</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>28121 A</td>
<td>28124 to 259-11A/B</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>6.320</td>
<td>0.10</td>
<td>08/01/14</td>
<td>5</td>
<td>12.1</td>
<td>1.6</td>
<td>3.1</td>
</tr>
<tr>
<td>28121 A</td>
<td>28124 to 259-11A/B</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>6.322</td>
<td>0.11</td>
<td>08/01/14</td>
<td>5</td>
<td>12.1</td>
<td>1.6</td>
<td>3.2</td>
</tr>
<tr>
<td>28131 G</td>
<td>259-7 to 259-10A/B</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>540</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>30</td>
<td>60</td>
<td>6.237</td>
<td>0.13</td>
<td>01/01/14</td>
<td>5</td>
<td>3.1</td>
<td>1.8</td>
<td>3.5</td>
</tr>
<tr>
<td>28131 A</td>
<td>259-7 to 259-4</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>575</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>45</td>
<td>50</td>
<td>6.360</td>
<td>0.11</td>
<td>02/01/14</td>
<td>5</td>
<td>1.3</td>
<td>2.9</td>
<td>4.9</td>
</tr>
<tr>
<td>28141 G</td>
<td>259-10A/B to 25E-1 SS</td>
<td>OS T</td>
<td>92 Cr.</td>
<td>540</td>
<td>2.50%</td>
<td>0.7 - 2.3</td>
<td>0.7 - 4.9</td>
<td>30</td>
<td>60</td>
<td>6.279</td>
<td>0.15</td>
<td>01/01/14</td>
<td>5</td>
<td>7.1</td>
<td>2.8</td>
<td>6.9</td>
</tr>
<tr>
<td>28215 EC</td>
<td>259-16 to 250-22 A/B</td>
<td>YTB</td>
<td>92 Cr.</td>
<td>612</td>
<td>5.00%</td>
<td>1.1 - 2.2</td>
<td>0.7 - 2.1</td>
<td>10</td>
<td>20</td>
<td>6.260</td>
<td>0.22</td>
<td>08/01/14</td>
<td>5</td>
<td>30.2</td>
<td>2.9</td>
<td>4.9</td>
</tr>
<tr>
<td>28222 EC</td>
<td>259-22 to 25E-15 E/T</td>
<td>YTB</td>
<td>92 Cr.</td>
<td>612</td>
<td>5.00%</td>
<td>1.1 - 2.2</td>
<td>0.7 - 2.1</td>
<td>10</td>
<td>20</td>
<td>6.230</td>
<td>0.11</td>
<td>03/01/14</td>
<td>26.5</td>
<td>2.9</td>
<td>4.9</td>
<td>3/19/14</td>
</tr>
</tbody>
</table>
Challenges of Processing Heavy Canadian Crudes

Understanding 2nd and 3rd Order Effects

- TAN comes with the crude and is only destroyed at certain locations:
 - Hydrotreater/ desulfurizer reactors
 - FCCU reactors
 - Coker reactors

- The same system that was used for the front end of the refinery [i.e. crude/vacuum units] must now be completed for each unit:
 - Process streams that will see temperatures $>450^\circ F$
Challenges of Processing Heavy Canadian Crudes

Questions