TECHNOLOGIES FOR OIL SANDS CRUDE QUALITY IMPROVEMENT

Heather D. Dettman (NRCan)
Shunlan Liu and Duke DuPlessis (AI-EES)
CCQTA/COQA Joint Meeting
Kananaskis, Alberta
June 19-20, 2012
Background

- Under the Hydrocarbon Upgrading Demonstration Program (HUDP) funded by Alberta Innovates – Energy and Environment Solutions (AI-EES), Jacobs Consultancy (Rich Hill) performed a review of upgrading technologies.

- From that review, separation technologies were found to have inherent advantages over conversion processes for upgrading oil:
 - Lower operating and capital costs
 - Higher reliability and operability
Background (cont’d)

- However, the application of separation technologies to extra heavy crudes like oil sands crude has been limited due to:
 - Low yield (impacting economics and GHG emissions)
 - Poor contaminant segregation
 - Poor chemical and physical characteristics of products
Separation Technology Development

- A new program initiated by AI-EES and Natural Resources Canada (NRCan) in November 2010 is looking at new approaches for:
 - Removal or segregation of metals and chlorides
 - Reduction of naphthenic acid content
 - Maximization of product yield
 - Improved extraction of oil from water, clays, and sand
 - Minimization of tailings formation
Program Focus

- Three year program aimed at developing separation technologies to be used in the field to:
 - Improve the quality and value of oil sands crude
 - Reduce the environmental impacts of upgrading and refining oil sands crude
Program Focus (cont’d)

- Research and development projects are being conducted under three areas:
 - Improved Processing for Mitigation of Fouling and Corrosion Problems
 - Novel Separation Technologies
 - Advanced Separation Pilot Plant
Improved Processing for Mitigation of Fouling and Corrosion Problems

- Aims to develop fundamental knowledge of the molecular species and mechanisms involved during process issues
 - Development of analytical techniques for quantifying and characterizing problem species
 - Construction of test units for measuring the impacts of different mitigation approaches
Novel Separation Technologies

- Aims to assess different separation technology strategies under the same test conditions to allow performance comparisons
 - Screening of technologies with batch extraction experiments
 - Determination of the impacts of thermal pre-treatment of the oil
 - Development of continuous pilot plant facilities for test runs of promising technologies to obtain information for engineering and economic evaluations
Advanced Separation Pilot Plant

- Aims to construct pilot-scale facilities in collaboration with industry partner(s) for demonstration of promising separation technology
 - Discussions with technology vendors
 - Selection of technology(s)
 - Construction of facilities
 - Performance of test programs
Progress to Date

- Improved Processing for Mitigation of Fouling and Corrosion Problems
 - Both batch and continuous corrosion test units have been constructed and are being used to test the corrosivity of global crudes and crude fractions under refinery vacuum tower conditions
 - Both batch and continuous fouling test units have been installed and are being used to test the fouling propensity of crudes and crude blends under refinery preheater conditions
 - Method development underway to isolate and characterize the “most corrosive” naphthenic acid species
Progress to Date (cont’d)

- Novel Separation Technologies
 - In collaboration with KBR, a continuous pilot-scale extraction test unit is being constructed at CanmetENERGY
 - Batch-scale extraction tests have been conducted using paraffinic solvents, with and without additives
 - Literature review of separation technology patents has been prepared
Progress to Date (cont’d)

- Advanced Separation Pilot Plant
 - Design of a pilot plant for installation at CanmetENERGY to demonstrate JGC supercritical water technology for upgrading oil sands crude is underway
 - Discussions with extraction technology vendors continue....
Going Forward….

- Experimental test scenarios will be completed and the performance information captured in an extraction simulation model
- With industry partners, development of promising new technologies will be continued
Funding Acknowledgements

- Partial funding from:
 - Natural Resources Canada through the Canadian Program for Energy Research and Development, and the ecoENERGY Innovation Initiative
 - Alberta Innovates – Energy and Environment Solutions