On-Line Analysis for Transition Metals and Chlorine in Crude Oil and Aqueous Matrices

Berry Beumer
Elemental Analysis Solutions using X-Ray Fluorescence

MWD XRF

- Emitted Characteristic X-rays from Sample
- Detector
- Monochromatic Excitation
- Optics

Polychromatic Incident X-rays from tube
Monochromatic Excitation
Sulfur Kα Beam

HD Maxine
MWD XRF
<table>
<thead>
<tr>
<th>Standard</th>
<th>Gas, diesel 4-500ppm</th>
<th>Gas, diesel 5-500ppm</th>
<th>Gas, diesel 4-500ppm</th>
<th>Gas, diesel 5-500ppm</th>
<th>Petroleum 3ppm-4.6wt%</th>
<th>Gas, diesel 4-500ppm</th>
<th>Gas, diesel 5-500ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM D7039</td>
<td>LOD</td>
<td>LOD</td>
<td>LOD</td>
<td>LOD</td>
<td>LOD</td>
<td>LOD</td>
<td>LOD</td>
</tr>
<tr>
<td>ISO 20884</td>
<td>0.15ppm 300s</td>
<td>0.4ppm 300s</td>
<td>0.4ppm 300s</td>
<td>0.4ppm 300s</td>
<td>0.4ppm 300s</td>
<td>0.4ppm 300s</td>
<td>0.4ppm 300s</td>
</tr>
<tr>
<td>r (10ppm)</td>
<td>0.6ppm</td>
<td>0.8ppm</td>
<td>0.8ppm</td>
<td>0.8ppm</td>
<td>0.8ppm</td>
<td>0.8ppm</td>
<td>0.8ppm</td>
</tr>
<tr>
<td>R (10ppm)</td>
<td>1.1ppm</td>
<td>1.4ppm</td>
<td>1.4ppm</td>
<td>1.4ppm</td>
<td>1.4ppm</td>
<td>1.4ppm</td>
<td>1.4ppm</td>
</tr>
</tbody>
</table>
Silicon in Fuels

<table>
<thead>
<tr>
<th>ASTM D7757</th>
<th>Gasoline, Ethanol 3-100ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD ethanol</td>
<td>0.5ppm 600s</td>
</tr>
<tr>
<td>r (10ppm)</td>
<td>1.0ppm</td>
</tr>
<tr>
<td>R (10ppm)</td>
<td>1.8ppm</td>
</tr>
</tbody>
</table>
Phosphorus in Fuels and Water

No ASTM method at this time

<table>
<thead>
<tr>
<th>LOD ethanol (600s)</th>
<th>0.4 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (10ppm)</td>
<td>1.2ppm</td>
</tr>
<tr>
<td>R (10ppm)</td>
<td>2.0ppm</td>
</tr>
</tbody>
</table>
Chlorine in Fuels and Water Matrices

<table>
<thead>
<tr>
<th>ASTM D7536</th>
<th>0.5-15ppm Aromatics</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD Crude</td>
<td>0.2ppm @ 300s</td>
</tr>
<tr>
<td>r (10ppm)</td>
<td>0.8ppm</td>
</tr>
<tr>
<td>R (10ppm)</td>
<td>1.4ppm</td>
</tr>
</tbody>
</table>
MWD XRF
Single Element On-line Measurements

LOD in hydrocarbon matrix
ppm in 300 s

- Sulfur 0.6 ppm
- Chlorine 0.3 ppm
- Phosp 1.2 ppm
- Silicon 1.5 ppm
- Vanadium 0.05 ppm

- Low viscosity process streams and finished product blending
 - Diesel
 - Gasoline

Challenge: On-Line Analysis in Crudes and High Viscosity Process Streams
Dynamic Window Module – Low Viscosity Streams
Transition Data

XOS High to Low Cut response

Film advance

Time (seconds):

0:00:00 1:12:00 2:24:00 3:36:00 4:48:00 6:00:00 7:12:00 8:24:00 9:36:00 10:48:00

PPM:

0 5 10 15 20 25 30 35 40
Sulfur in Diesel

28 Hour Data Run on a SINDIE On-Line Analyzer
Average = 8.65 ppmw; SD = 0.31 ppmw
Sulfur in Seawater

Total Sulfur Concentration In Sea Water (3-1/2% NaCl In De-Ionized Water)
40 ppmw Static Sample Measured for 48 hours In a Single Process Analyzer
Avg = 40.99 ppmw ; Std Dev = 0.96 ppmw

Graph showing sulfur concentration over time with data points consistent with 40 ppmw average and 0.96 ppmw standard deviation.
On-line Chlorine Detection in Crude and Water

- **Corrosion Prevention / Mitigation**
 - LOD: 0.6 ppm @ 300s – aqueous matrix
 - LOD: 0.4 ppm @300s – hydrocarbon matrix

- Analysis Time: 10-900s – user adjustable

- Range: 0.4 ppm/wt – 3,000 ppm/wt

- Continuous Measurement
Dynamic Window Module – High Viscosity Streams

- Redesigned DWM:
 - Sample Flow Characteristics Optimized for High Viscosity Streams
 - Quarter inch sample lines
 - Max. Viscosity 160 cSt
 - Sample T > cloud point, max 300 deg. F
 - Filtration: 100um
Analyzer set-up

Diagram showing the flow of raw crude through a desalter and fast loops, with desalted crude exiting and wash water entering.
Cl Repeatability in Desalted Crude Over 72 Hours
5 min integration time / 15 sec integration time
Avg = 5.1 ppmw; Std Dev = 0.21 ppmw
Online Chlorine Analysis in Desalted Crude
5 minute integration time over 10 hours

Avg = 2.63 ppm Std Dev = 0.13 ppm

Date / Time

Chlorine - 5 min integration
 Chlorine in Raw Crude – 5 hr run time

Gulf Coast Crude

5 ppm Cl addition (Organic Chloride)
Chlorine in Raw Crude – 5 hr run time
Western Canadian Crude – 20API

Sulfur: 2%
Chlorine: by lab extraction/titration: 2 ppm
Chlorine in Crude – 3 hr run time

Crude Sample Chloride Trend, ppmw

- STDEV=1.41
- STDEV=0.64

Crude API = 25

Online Clora Analyzer
Benchtop Clora

Time:
Chlorine in Water – 6 hr run time

Aqueous Sample Chloride Trend, ppmw

STDEV=1.8

STDEV=3.0

Online Clora Analyzer Trend
Benchtop Clora
Multi-Element Analysis

- Emitted Characteristic X-rays from Sample
- Detector
- Monochromatic Excitation
- DCC Optics
- Polychromatic Incident X-rays from Tube

Graphs:
- From Sample
- After DCC Optic
- From Tube Source
<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Li</td>
<td>Be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Na</td>
<td>Mg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td></td>
<td>0.5</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Cs</td>
<td>Ba</td>
<td>La</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fr</td>
<td>Ra</td>
<td>Ac</td>
<td>Rf</td>
<td>Db</td>
<td>Sg</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>89</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanthanides</td>
<td>Ce</td>
<td>Pr</td>
<td>Nd</td>
<td>Pm</td>
<td>Sm</td>
<td>Eu</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>Actinides</td>
<td>Th</td>
<td>Pa</td>
<td>U</td>
<td>Np</td>
<td>Pu</td>
<td>Am</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
</tr>
</tbody>
</table>

10 minute measurement time in hydrocarbon matrix
Multi Element On-line Detection

- HDXRF Platform – Multi Element Analysis
 LOD in ppm – 600 s
 - P 25
 - S 15
 - Cl 10
 - K 2
 - Ca 1.5
 - V 1.5
 - Mn 1.5
 - Fe 1.5
 - Co 1.0
 - Ni 0.5
 - Cu 0.3
 - Zn 0.3
 - Hg 0.15
 - As 0.15
 - Pb 0.15
 - Se 0.08
Online Maxine Trends - 6/13 to 6/14/2012

Blend of Canadian Crude

Continuous sample flow with continuously acquired data using a 300 second integration time and 60 second pause time between successive measurements.
Online Maxine Multi-Element Analysis of Various Crudes

Empty cell - Flow stopped (no pressure) during tank clean out and sample change; Added 90 micron filter.

3:

V_avg = 77.6; V_stddev = 0.90;
Fe_avg = 16.2; Fe_stddev = 0.65;
Ni_avg = 14.3; Ni_stddev = 0.10
Cr_avg = 0.2; Cr_stddev = 0.14
Conclusion

• On-line and bench-top single element analysis in crude and water is available for Cl, S, P, Si and V at sub ppm detection limits

• Multi element bench-top analysis of critical (transition) elements can be done by HD XRF

• Multi element on-line analysis in crude and process streams a reality today.
Thank you

Berry Beumer
bbeumer@xos.com