



- Project Objectives
  - Testing framework for analysis and sampling
    - ♠ Provide most accurate H2S values
    - ♠ Reduce analytical error, technician variability
  - Educate transportation operators
    - ♦ H2S potential of crudes in system
    - ♦ Health and safety issues
  - All operators using the same test method and comparing the same data



Available Testing Methodologies

- ASTM D5705
  - **♦** Easy to perform, low equipment costs
  - ♦ Only measures vapor phase H2S







- Available Testing Methodologies, cont.
  - ASTM D5623
    - ♠ Provides speciation between (sulfur compounds)
    - ♦ High equipment costs (\$80K)
    - ♠ Requires experienced technician to operate.
    - ◆ Not practical for most terminal operators





- Available Testing Methodology, cont. UOP 163
  - **♦** Easy to perform, low equipment costs
  - Data interpretation requires skilled technician
  - ♦ Only measures liquid phase H2S





- Available Testing Methodology, cont.
  IP 570

  - ◆ Operator independent, little technical training required. NO interpretation required.





### Method Scope Comparison

**D5623** – Applicable to distillate, gasoline motor fuels and other petroleum liquids with a FBP <230C. Range 0.1-100mg/kg

**D5705** – Applicable to residual fuel oil. Applicable to liquids 5.5 @ 40C to 50 and 100C. Range 5-4000ppmv.

**UOP 163** – Applicable to gasoline, naphtha, light cycle oils, and similar distillates that are liquid at ambient temperature and pressure. Lower quantitation limit is 1.0 mg/kg.

IP 570 – Applicable to marine fuels. Range 0-50 mg/kg(Note: Method and instrument has been modified to accommodate for the volatile nature of crude/condensate products to limit the interference from light end components.)



#### Analysis Protocol

- ◆ As each sample was opened the full set of tests was completed immediately, prior to opening the next sample.
- ◆ Samples were refrigerated until opened.



# **Analysis Data**



| Sample Description | ASTM D445      | ASTM D5002     | ASTM D5191     | UOP 163          |           | <b>ASTM D5705</b>        | <b>ASTM D5623</b> | IP 570 |
|--------------------|----------------|----------------|----------------|------------------|-----------|--------------------------|-------------------|--------|
|                    | Viscosity@20°C | Density @ 15°C | Vapor Pressure | H <sub>2</sub> S | Mercaptan | H <sub>2</sub> S - Vapor | H <sub>2</sub> S  | H2S    |
|                    | cSt            | kg/m3          | DVPE (kPa)     | mg/kg            |           | ppmv                     | mg/kg             | mg/kg  |
| WTS                | 19.65          | 877.6          | 35.1           | 36               | 0         | 1                        | 24.2              | 0.54   |
|                    |                |                |                |                  |           |                          |                   |        |
| TK 1106            | 13.82          | 856.9          | 16.7           | 16               | 0         | 0                        | 15.0              | 0.00   |
| Peace Sour         | 4.91           | 816.2          | 54.9           | 110              | 0         | >2000                    | 74.9              | 124.6  |
| Peace Sour         | 11.5 1         | 010.2          | 3 113          | 126              | 0         | >2000                    | 67.6              | 108.2  |
| Peace Sour         |                |                |                | 127              | 0         | >2000                    | 70.8              | 126.9  |
| 004                | 6.244          | 065.2          | 20.6           | 0                | 0         | 0                        | 0.0               | 0.00   |
| OSA                | 6.311          | 865.2          | 20.6           | 0                | 8         | 0                        | 0.0               | 0.00   |
| Koch               | 9.392          | 839.4          | 57.3           | 104              | 0         | >2000                    | 76.7              | 167.2  |
| Koch               |                |                |                | 105              | 0         | >2000                    | 61.0              | 247.0  |
| Koch               |                |                |                | 104              | 0         | >2000                    | 52.3              | 204.5  |
| CRL-403            | 1.345          | 749.7          | 85.5           | 26               | 237       | 241                      | 17.2              | 8.6    |
| CRL-403            |                |                | 55.5           | 27               | 248       | 295                      | 19.1              | 16.4   |
| CRL-403            |                |                |                | 28               | 234       | 268                      | 17.7              | 6.4    |
| CPM-781            | 1.279          | 762.2          | 72.3           | 16               | 40        | 0.5                      | 14.2              | 0.02   |
| CPM-781            | 1.273          | 702.2          | 72.5           | 17               | 38        | 1                        | 14.2              | 0.02   |
| CPM-781            |                |                |                | 11               | 56        | 2                        | 12.2              | 0.01   |
|                    |                |                |                |                  |           |                          |                   |        |
| CPR-025            | 1.028          | 750.3          | 80.7           | 34               | 222       | 11                       | 17.2              | 0.09   |
| CPR-025            |                |                |                | 34               | 220       | 12                       | 11.9              | 0.09   |
| CPR-025            |                |                |                | 34               | 225       | 11                       | 13                | 0.10   |



#### H2S Measurement in Crude

- Potential Interferences
  - Chlorides (halides?)
  - UOP-163 inflection point interpretation
    - Dave to provide copies of inflection curves to all
    - ◆ Curves were actually very "clean" and relatively easy to interpret
  - Corrosion inhibitors (nitrogen based)
  - Mercaptans? D5623 segregates the mercaptans and IP570 VPP development was based on removing mercaptan and light hydrocarbon interferences
  - Scavengers water based cations? (HS- scavengers retaining partial H2S in "ionic" state)



#### **H2S Measurement in Crude**

#### Follow Up Discussions

- Agreed that future testing would include SAPA (saturates, aromatics, polars, asphaltenes), C30+ compositional analysis, Karl Fischer titration, and nitrogen testing by D4629
- Agreed that future testing would be done on one only sample from the triplicate sample sets
- Agreed that samples to be tested would be CPR (Peace condensate [Enbridge EP], CPM (Pembina Drayton Valley condensate [Enbridge EP]), CRL (Plains Midstream Rangeland condensate [Enbridge EP]), PEM (Pembina sweet crude [Kinder Morgan]), and TK1106 [Coffeyville Resources, KS],
- Agreed to proceed with testing matrix ASAP based on Dave Murray's estimate of ~\$5,000 analytical costs and end of February completion estimate



#### H2S Measurement in Crude

- Does anyone in COQA audience have any experience/insight that could streamline or focus our efforts??
  - Example: H2S scavengers
    - ♠ Are there naturally occurring varieties??
    - ♦ Would amine based corrosion inhibitors, "bug killers", or something else be interfering??
- Please contact Bill Lywood
  - ♦ 780-991-9900 or <a href="mailto:lywood@crudequality.com">lywood@crudequality.com</a>