Crudes Oils & Refining – Outlook and Impacts of Regulations

Martin Tallett
EnSys Energy
1775 Massachusetts Avenue, Lexington, MA 02420, USA
(781) 274 8454
www.ensysenergy.com

Crude Oil Quality Association (COQA)
Houston, October 28 2010
Overview

• Global downstream outlook
 – Where we are - Recession’s impacts
 – Drivers in future supply, demand, refining
 – Potential legislative impact – marine fuels
 – Implications for heavy/opportunity crudes

• Energy / climate legislation
 – Status & prospects: Europe, USA and other regions
 – Potential to re-arrange refining and oil markets
 – Implications for heavy/opportunity crudes

• Summary comments
EnSys Energy

• 40 years of experience – refining, engineering back grounds

• Focus on regional and especially global integrated studies using our WORLD model
 – Bottom up detail matched to top down scenarios
WORLD Model Overview

INPUTS
- Global petroleum product demand and quality by type and region.
- Crude and non-crudes production and pricing. World oil/marker crude price.
- Existing refining capacity and known projects by region and type.
- Pipeline, marine and port to port transportation costs. World-Scale basis.

ANALYSIS
- Emulates the activities and economics of the petroleum industry.
- Captures the interactions between crude supply, refining, product demand and pricing.
- Simulates and interlinks each of the World’s major refining regions.
- Employs EnSys’ proprietary RTEC refinery model.

OUTPUTS
- Refinery operations, product blending, and capacity additions.
- Prices for all crudes, non-crudes, and products by region, vs. marker.
- Refining spreads and margins. Refining investments.
- Inter-regional crude and product trade.
Global Modeling “Total Liquids”

- WORLD calculates 22 global refining regions and captures their interactions on a global scale

Study used version with US sub-regional refining detail
Recession’s Impacts - Demand Loss

- 4 million bpd demand loss for 2010, 8 million for 2015/2020 versus prior expectation

Projected Demand Loss
AEO 2009 Stimulus - AEO 2007

- 2006
- 2008: 4 million bpd
- 2020: 8 million bpd
- 2025
- 2030
Recession’s Impacts -
Refining economics reverse - again
• Refining’s golden age short-lived
Recession’s Impacts -
Pre-recession refinery projects still under way

- Announced refinery projects have steadily risen:
 - early 2007 - 14 mb/d
 - early 2008 - 20 mb/d
 - early 2009 - 35 mb/d

- 6 mbpd actual expansions expected by 2015
 - Mainly capacity already under construction
 - Sustains capacity overhang, low utilizations

Source: OPEC World Oil Outlook 2009
Recession’s Impacts - Capacity Overhang

• Implication is significant refinery closures
 – Emphasis on USA, Europe, Japan
 • Refineries that are smaller, inefficient, gasoline oriented, no specialty products/petrochemical integration, no geographic protection, no local crude
 – n.b. 200,000bpd / 10 mtpa is no longer “big”
 – 3+ million bpd of closures needed to restore regional refinery utilizations to 80-85% level by 2015

• This would not be the first time
 – 1980’s global capacity dropped by 9 mbd from 82 to 73 mbd
Recession’s Impacts – Growing Competition

- Increasing inter-regional competition for product markets:
 - Capacity surpluses / imbalances in USA and Europe
 - US product exports have nearly doubled since 2005
 - Europe drive to export gasoline
 - New large scale export refining capacity
 - India: Reliance / Essar
 - Middle East: ARAMCO
 - High crude prices make product/crude relatively cheaper to move long distance
 - Effect augmented by short term tanker over-supply, depressed freight rates
Looking Ahead- Baseline Outlook is Tough

• Severe reversal for refiners from growth/tightness to surplus/poor margins
 – Collapsing demand has lead to an oversupply of product
 – Continued refinery investments and biofuels growth are exacerbating excess refining capacity
 – Prospects for poor margins and closures – especially OECD / Atlantic Basin
Looking ahead –
Global crude slate quality relatively stable

- Slowly declining proportion of sweet/light crudes
- Slowly rising heavy
 - Oil sands / Ven Orinoco offsetting dropping Mex/Ven conventional
- Gradually rising proportion of medium gravity
- Rising opportunity crude volumes

Source: OPEC World Oil Outlook 2009
Looking ahead – Non-crudes grow in importance

- Strong growth of NGL’s, condensates, biofuels
- Rising proportion of non-crudes in total supply

* Including other natural gas based streams like hydrogen, methanol and petrochemical returns.

Source: OPEC World Oil Outlook 2009
Looking ahead –
Non-crudes cut refining, upgrading needs

- Non-crudes:
 - Are mainly light clean streams
 - Satisfy around half of the growth in liquids demand
 - Reduce need for refinery production and upgrading

Growth in Non-crudes Supply and Total Oil Liquids Demand vs 2010

- Non-crudes: NGL's, condensates, biofuels, CTL/GTL, petchem returns, other

<table>
<thead>
<tr>
<th>Year</th>
<th>Non-crudes growth</th>
<th>Oil demand growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>4.5</td>
<td>10.0</td>
</tr>
<tr>
<td>2020</td>
<td>6.5</td>
<td>12.0</td>
</tr>
<tr>
<td>2025</td>
<td>12.0</td>
<td>15.0</td>
</tr>
<tr>
<td>2030</td>
<td>20.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Looking Ahead –
Demand growth emphasizes distillates

- Projected to resume growth dominance – n.b. marine fuels

Global product demand changes between 2008 and 2030
(Source: OPEC World Oil Outlook 2009)

*Includes refinery fuel oil.

**Includes bitumen, lubricants, waxes, still gas, coke, sulphur, direct use of crude oil etc.*
Looking Ahead –
Land-based fuels quality tightening continues

- OECD regions relatively stable at ULS standards, but:
 - US, possible “national clean gasoline”, EPA revised ozone standard
 - Europe: Euro VI, marine fuel ECA’s, in port rule

- Non-OECD progressively moving to EURO III/IV/V standards
Looking Ahead – Demand Growth is in non-OECD

- Atlantic basin demand flat
- Bulk of growth in Pacific basin

Growth in oil demand, 2008–2030

- OECD oil demand peaked in 2005
- 79% of the net growth in oil demand is in developing Asia

Source: OPEC World Oil Outlook 2009
Looking Ahead - Marine fuels regs could have massive impact on demand / quality

- Official statistics seriously understate global marine fuel consumption
 - Recent work by Navigistics & others estimates demand at around 370 million tpa (6.7 mmbpd) twice that reported by the IEA
 - assessment is supported by IMO
 - Implication is around 450 mmtpa, 8.2 mmbpd, by 2020 of which 6 mmbpd is IFO
 - IEA acknowledge the issue
 - misreported barrels
Looking Ahead - Marine fuels regs could have massive impact on the downstream

- Recent MARPOL AnnexVI regulations set out a timetable for improved marine fuel environmental performance – standards are SOx, PM, NOx

 - Today’s MGO/MDO can readily be desulfurized to 0.1/0.5%
 - But IFO must be converted to distillate to meet 0.1/0.5%

Proposed implementation schedule has four steps
Ratified at the October 2008 IMO MEPC meeting

1. All ECA 1.0% S (July)
2. Global cap 3.5% S (January)
3. All ECA 0.1% S (January)
4. Global cap 0.5% S (January)

Global cap 4.5% Baltic and North Sea SOx ECA 15%
Looking Ahead - Marine fuels regs could have massive impact on the downstream

• Annex VI rule is clearly written but leaves open major uncertainties:
 1. Future extent of ECA’s
 2. Timing of global 0.5% rule (2020 / 2025?)
 3. Potential extent of compliance by use of low sulfur fuel versus on-board scrubbing

• Current scrubber sea trials could mean their commercial potential will be clearer with the next 1-2 years
 – Scrubbers could enable SOx standards to be fully met with existing fuel mix, may be needed for PM
 – Outlook is anything from limited fuel change (0.1% MGO/MDO for current ECA’s) to total IFO conversion
 – Uncertainty leads to “wait and see” by refiners and shippers
 – But implementation by 2020/2025 requires long lead times
Looking Ahead - Marine fuels regs could have massive impact on the downstream

- Depending on scrubber success, refiners are likely to see either partial or total shift from IFO (residual) bunkers to marine distillate
 - Studies by EnSys for EPA, API and IMO showed related additional upgrading capacity needed
 - Still substantial even if conversion only partial
 - Major implications for upgrading capacity, utilization, coke production

Impacts of Total Global IFO Conversion to Marine Distillate

<table>
<thead>
<tr>
<th></th>
<th>EnSys WORLD Model</th>
<th>EnSys IMO 11/2007 Report</th>
<th>Current Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFO converted 2020 mmtpa</td>
<td>381</td>
<td>354</td>
<td></td>
</tr>
<tr>
<td>IFO converted 2020 mmbpd</td>
<td>6.75</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>Global refining capacity impacts million bpcd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crude distillation</td>
<td>1.6</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>vacuum distillation</td>
<td>5.8</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>coking</td>
<td>2.5</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>hydro-cracking</td>
<td>6.7</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td>sulfur tons pd</td>
<td>28,140</td>
<td>26,150</td>
<td></td>
</tr>
<tr>
<td>Incremental investment $bn</td>
<td>$150</td>
<td>$150+(1)</td>
<td></td>
</tr>
<tr>
<td>Incremental pet coke output million tpa</td>
<td>47</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

(1) Construction costs have since risen
Looking ahead –
Refining margins depend on configuration

• Gasoline/naphtha projected to be in surplus, depressed margins, distillate re-strengthens

Price differentials for major products
Historical and projected

Source: OPEC World Oil Outlook 2009

Made little difference whether refinery produced gasoline or distillate

Makes major difference whether refinery produces gasoline or distillate

Price differentials are for Rotterdam market calculated versus Brent.
Looking ahead –
Refining margins depend on configuration

• Unlike pre 2005, distinct margin differences depending on whether refinery emphasizes gasoline or distillates
 – **Upgrading:**
 • FCC, coking surplus, lower margins
 – FCC increasing resid feed, distillate yield
 • Hydro-cracking / distillates in demand, higher margins
 – High crude prices relative to gas, coal/coke create incentives for less carbon rejection, more hydrogen addition
 – **Quality:**
 • Premiums remain for high quality products
 – **Scale:**
 • Larger refineries (300,000 – 600,000 bpd) drive economies of scale (e.g. Reliance)
Looking ahead –
Relative crude, gas, coal prices a driver

• Potential for continued high price of raw material (crude) relative to coal/fuel grade coke, natural gas alters historical relationship

 – Makes carbon rejection (coking, FCC) less attractive

 – Hydrogen addition (hydro-cracking / HDS) more attractive

 Which also fits with trend to distillates and LS/ULS products

Crude:NGS
Outlook: 12 – 16:1
Recent history 8-9:1
Btu equivalent 6:1
Looking Ahead – Implications for heavy/opportunity crudes

<table>
<thead>
<tr>
<th>Driver / trend</th>
<th>Impact on opportunity crudes value relative to markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand growth mainly light products</td>
<td>Depress/wider differentials</td>
</tr>
<tr>
<td>Rising volume of marine fuel</td>
<td>Raise/narrower differentials</td>
</tr>
<tr>
<td>Potential marine fuel conversion to distillates</td>
<td>Depress</td>
</tr>
<tr>
<td>Rising importance of non-crudes (mainly clean light)</td>
<td>Raise</td>
</tr>
<tr>
<td>Refinery expansions</td>
<td>Raise</td>
</tr>
<tr>
<td>Refinery closures</td>
<td>Minor</td>
</tr>
<tr>
<td>High crude price of itself & vs. coal</td>
<td>Depress</td>
</tr>
</tbody>
</table>
Energy/Climate Policy – Regulatory Emphasis is Shifting

• 1990’s / early 2000’s
 – Strong emphasis on fuels qualities / air emissions controls:
 • US: RFG/oxy/ULSG/D, EU: Euro III/IV/V
 • SOx, NOx, CO, HC, toxics, ozone, PM
 • Other regions: adopting Euro standards
 • Marine fuels: MARPOL Annex VI

• Mid / late 2000’s
 – Energy efficiency
 – GHG emissions
 – Energy security

Inherent conflict as fuels quality regs lead to more refinery processing
Energy/Climate Policy - Europe

• Climate Action & Renewable Energy Package “20 by 2020”
 – 20% renewables by 2020
 – 20% GHG reduction below 2005 by 2020
 – Expand Emissions Trading System (EU ETS)

• Vehicles Emissions Performance Standards
 – 40% CO₂ emissions reduction in new vehicles by 2020

• Fuel Quality Directive (Dec 2008)
 – Reduction in life cycle greenhouse gas emissions from energy supplied
 • “binding target” of 6% possibly going to 10% by 2020
 » 2012 review
 • 10% ethanol in gasoline, inland waterway fuel 10ppm Jan 2011
Energy/Climate Policy - Europe

- Climate Action & Renewable Energy Package “20 by 2020”
- ETS third phase (2013) introduces new concepts, limits
 - Acknowledges risk of “carbon leakage”
 - But lowers carbon allowances for EU refiners
 - Introduces benchmarking, planned CONCAWE/Solomon scheme
 - Likely to force closures, also switching of refinery fuel from resid to natural gas

ETS targets for refining sector

[Graph showing ETS targets for refining sector]

ETS refining benchmark curve

[Graph showing ETS refining benchmark curve]
Energy/Climate Policy - Japan

• Long history of climate action & efficiency
 – 1997 Keidanren voluntary cap & trade
 – 2005 voluntary ETS, expanded 2008
 • Covers 70% of industry
 – 2009 Innovation for Green Economy & Society Bill
 • Stimulate energy efficiency, nuclear, renewables
 – 2010 draft comprehensive cap & trade legislation
 • Carbon tax starting 2011, opposed by industry

• 2010 Refinery upgrading rule
 – METI rule requires refiners in Japan to increase resid upgrading ratios – and/or close distillation capacity
 • Impact uncertain but primary effect could be closures
 – Up to 1.3 million bpd needed to balance supply and demand
Energy/Climate Policy - China

- Has opposed emissions cap
 - But moving to increase energy efficiency, renewables
 - Wind, solar – but also CTL output
 - Experimenting with cap & trade, carbon tax schemes
 - Goal to cut carbon intensity 40-45% by 2020
 - Stimulate energy efficiency, nuclear, renewables

Energy/Climate Policy - Canada

- Kyoto signatory but wait & see pending US legislation
 - Most provinces – but not Alberta – potentially covered under US/Canada Western Climate Initiative
 - Focus more on carbon tax than cap & trade
 - BC initiative
Energy/Climate Policy - USA

• **Multiple initiatives**
 – Administration “command & control”
 • RFS-2, CAFE, EPA GHG Tailoring Rule, (EPA ozone)
 – **Federal cap & trade**
 • Passed house May 2009, apparently dead in Senate
 – **States/Regions cap & trade**
 • California, western states, midwest, northeast
 – **Federal & States Low Carbon Fuel Standard**
 • California: AB32
 • Northeast states: MoU Dec 2009
 • EISA 2007: Section 526, federal fuels
 » (was component of W-M – could reappear)
Energy/Climate Policy - USA

- **RFS-2 Renewable fuel standard**
 - *Energy Independence & Security Act, 2007*
 - *Greatly increases total mandated renewable fuel consumption vs RFS-1*
 - 36 billion gpy by 2022
 - = 2.3 million bpd
 - displaces energy of 1.3 million bpd conventional gasoline
Energy/Climate Policy - USA

• National Fuel Efficiency Program
 – Obama Administration, May 2009
 – Requires 35.5 mpg “CAFE” national new vehicle standard by 2016

• Compares to 28.2 2009 CAFE standard and about 25 mpg in 2009 for total US light vehicle fleet
• Equates to approx EU fleet today

Average Required Fuel Economy (mpg) under Proposed Standards

- Passenger Cars
- Light Trucks
- Combined

- 2012
- 2013
- 2014
- 2015
- 2016
Energy/Climate Policy - USA

- **EPA**
 - **Mandatory CO₂ reporting from 2010**
 - Foundation for GHG programs
 - **GHG Tailoring Rule (NPRM Sept 30th 2009)**
 - Supreme Court ruled CO₂ comes under Clean Air Act
 - First phase 14,000 large emitters > 25,000 tpy CO₂ e
 - 68% of stationary source emissions
 - **Revised Ozone Rule (NPRM Jan 6th 2010)**
 - 65-70 instead of 75 ppb standard
 - Aug 31st, 2010 - EPA target for Final Rule
 - August 2011 – final area designations
 - Implementation: 2014 – 2031 depending on severity
 - Implications for NOx, VOC, more low RVP gasoline
Energy/Climate Policy - USA

• Regional Emissions Trading Regulation
 – 3 Regional Blocs have emerged
Energy/Climate Policy - USA

• Several initiatives include Low Carbon Fuel Standard (LCFS)

• Energy Independence & Security Act, Sec. 526
 – Fuels to military, other Federal agencies must have life cycle GHG emissions <= conventional

• California AB32
 – Cuts carbon intensity 10% by 2020
 • Requires assessment of CO₂ footprint on life-cycle “well to wheels” basis (not just fuel carbon content)

• Northeast & mid-Atlantic (11) States
 • Memo of Understanding, Dec 29th 2009
Energy/Climate Policy - USA

LCFS: Combustion is primary life cycle GHG contributor

Figure ES-3. Life Cycle GHG Emissions for Conventional Transportation Fuels in kg CO₂E per MMBtu LHV Fuel Consumed

Energy/Climate Policy - USA

- LCFS: but much of focus has been on production
Energy/Climate Policy - USA

• Federal climate bills
 • “American Clean Energy and Security Act”
 • Cap & trade
 – Kerry-Boxer, Senate Bill, drafts Sept, Nov 2009
 • “Clean Energy Jobs and American Power Act”
 • On-going negotiations
 • Passage of cap & trade bill questionable in 2010
Climate Legislation is Likely to Rearrange Oil Markets

- Carbon allowance costs / taxes will act to raise refinery energy/hydrogen efficiencies but scope is limited
 - Several areas of potential exist:
 - Heat integration, co-generation
 - New technologies for heat exchanger cleaning / performance and for inspection
 - Process catalysts operating at lower P, T, H2 consumption
 - H2 plant higher efficiencies, (possible CCS)
 - But high crude/fuel prices arguably will drive part of this anyway
 - Potential may be 10% to possibly 20% over time
 - Cannot “wish away” the energy/H2/processing disadvantages of heavy/opportunity crudes
Climate Legislation is Likely to Re-arrange Oil Markets

- Depending on the way legislation is written, could relocate refining capacity over time
 - Generally out of OECD into non-OECD regions
 - Results from EnSys’ 2009 study of Waxman-Markey for the API illustrate
 - Produce more refinery CO2 “leakage” than reduction

Source: EnSys study of Waxman-Markey for the API 2009
Climate Legislation is Likely to Re-arrange Oil Markets

- Light/heavy crude differentials widen

![Impact of Carbon Allowance Cost on WTI-Mayan Crude Differentials](source: EnSys Waxman-Markey Analysis)
Climate Legislation is Likely to Re-arrange Oil Markets

- Carbon regime regions, e.g. US, Europe, likely to take in more light, sweet crude, less heavy, sour
 - Changed crude trading patterns
 - Less upgrading in carbon region refineries
 - Investments in heavy crude refineries hardest hit
- LCFS likely to further extend these impacts
 - e.g. Canadian oil sands, Ven syncrudes to US

![Impacts of Carbon Cost on Refining Investments - to 2020](chart.jpg)

Source: EnSys Waxman-Markey Analysis

<table>
<thead>
<tr>
<th>Type</th>
<th>Base</th>
<th>Low Cost</th>
<th>High Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large/Heavy</td>
<td>$70</td>
<td>$40</td>
<td>$10</td>
</tr>
<tr>
<td>Medium/Cracking</td>
<td>$10</td>
<td>$10</td>
<td>$10</td>
</tr>
<tr>
<td>Small</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
</tbody>
</table>
Climate Legislation is Likely to Rearrange Oil Markets

- Carbon regimes (and the often related transport efficiency measures) cut demand
 - IPCC scenarios show the potential for demand reduction and differences between OECD and non-OECD
 - A recent EPA study projected potential for US transport fuel demand reduction of 4-7 mmbpd by 2030 versus “reference” outlook
 - Adding demand and price differential factors together, carbon legislation could cut opportunity crude production
Climate Legislation - Implications for heavy/opportunity crudes

<table>
<thead>
<tr>
<th>Climate legislation impact</th>
<th>Impact on opportunity crudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude valuations: Shift to reflect carbon content / LCFS profile</td>
<td>Heavy / opp crudes values drop relative to markers / light sweet</td>
</tr>
<tr>
<td>Crude trade: Incentives to move heavy/opp crudes out of carbon regime regions, light sweet crudes in, medium grade (Middle East) crudes balance</td>
<td>Latin American crudes to China, India, other? Canadian oil sands to Asia? California heavy grades to Asia?</td>
</tr>
<tr>
<td>Crude runs: Potentially cut in carbon regime areas, increased outside</td>
<td>Reinforces potential routing changes for heavy / opp crudes</td>
</tr>
<tr>
<td>Supply/demand: Carbon regimes aim to cut oil products demand, raise alternative fuels supply</td>
<td>Reduced need for, value of / production of heavy / opp crudes</td>
</tr>
</tbody>
</table>
Summary Comments

2010/2012: Key time

- We are in a period of exceptional uncertainty and potential for change
- 2010-2012 could be a key period for achieving some form of clarification:
 - Hopefully post-recession economic growth more set
 - Production.exports progress: WCSB, ESPO, Orinoco, Kuwait, Iraq
 - Marine fuels – scrubbing potential, ship efficiency/CO2 measures
 - Progress in EU on new carbon rules and implementation
 - Japan, Australia, China initiatives
 - US new energy legislation, Federal “energy” else regional??
- A clearer picture for crude producers & refiners 2+/- years from now?
Thank you!

Martin Tallett
EnSys Energy
1775 Massachusetts Avenue, Lexington, MA 02420, USA
(781) 274 8454
www.ensysenergy.com