Addressing the Challenges Associated with Canadian Crudes

Xiomara Price
Crude Oil Quality Association
February 11, 2010
New Orleans
Outline

• Why bother?
• What is different about these crudes?
• Program strategies employed by Baker Petrolite
• Case histories
Outline

• Why bother?
• What is different?
• Program strategies employed by Baker Petrolite
• Case histories
Oil Import to the U.S.

Total Imports of Petroleum (Top 15 Countries)
(Thousand Barrels per Day)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CANADA</td>
<td>2,527</td>
<td>2,363</td>
<td>2,447</td>
<td>2,534</td>
<td>2,482</td>
</tr>
<tr>
<td>MEXICO</td>
<td>1,083</td>
<td>1,136</td>
<td>1,237</td>
<td>1,406</td>
<td>1,308</td>
</tr>
<tr>
<td>VENEZUELA</td>
<td>890</td>
<td>955</td>
<td>1,099</td>
<td>1,236</td>
<td>1,191</td>
</tr>
<tr>
<td>SAUDI ARABIA</td>
<td>848</td>
<td>943</td>
<td>1,023</td>
<td>1,514</td>
<td>1,535</td>
</tr>
<tr>
<td>NIGERIA</td>
<td>980</td>
<td>869</td>
<td>783</td>
<td>827</td>
<td>993</td>
</tr>
<tr>
<td>IRAQ</td>
<td>458</td>
<td>499</td>
<td>461</td>
<td>476</td>
<td>636</td>
</tr>
<tr>
<td>ALGERIA</td>
<td>400</td>
<td>491</td>
<td>483</td>
<td>677</td>
<td>554</td>
</tr>
<tr>
<td>ANGOLA</td>
<td>431</td>
<td>450</td>
<td>477</td>
<td>450</td>
<td>509</td>
</tr>
<tr>
<td>RUSSIA</td>
<td>425</td>
<td>385</td>
<td>570</td>
<td>445</td>
<td>473</td>
</tr>
<tr>
<td>COLOMBIA</td>
<td>237</td>
<td>292</td>
<td>282</td>
<td>176</td>
<td>201</td>
</tr>
<tr>
<td>UNITED KINGDOM</td>
<td>190</td>
<td>278</td>
<td>249</td>
<td>245</td>
<td>242</td>
</tr>
<tr>
<td>VIRGIN ISLANDS</td>
<td>205</td>
<td>215</td>
<td>275</td>
<td>338</td>
<td>323</td>
</tr>
<tr>
<td>ECUADOR</td>
<td>155</td>
<td>180</td>
<td>187</td>
<td>229</td>
<td>217</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>268</td>
<td>174</td>
<td>319</td>
<td>286</td>
<td>261</td>
</tr>
<tr>
<td>AZERBAIJAN</td>
<td>74</td>
<td>134</td>
<td>69</td>
<td>71</td>
<td>74</td>
</tr>
</tbody>
</table>

Note: The data in the tables above exclude oil imports into the U.S. territories.

Source: U.S. Energy Information Administration
All Proposed WCSB Pipeline Projects

Source: Canadian Association of Petroleum Producers, June 2009 Crude Oil Report
Projected Growth in WCSB Supply

Bitumen blend forecasted to increase to 2.4 MM BPD by 2025

Source: Canadian Association of Petroleum Producers, June 2009 Crude Oil Report
Wide Variety of Crudes Available

- Traditional production
- Thermal, other in-situ production methods
- Mining operations
- Output from upgraders
 - Hydrotreated premium products
 - Various other blends
- Bitumen blends
 - Dil Bits
 - Syn Bits
 - Syn Dil Bits
Outline

• Why bother?
• What is different about these crudes?
• Program strategies employed by Baker Petrolite
• Case histories
Crude Quality

• Wide variability
 – Solids
 – Asphaltenes
 – Non-extractable salts
 – Amines - \(\text{H}_2\text{S} \) scavengers
 – TAN

• Process challenges
 – Wide stable emulsion
 – Poorer dehydration
 • Poor desalting
 – Higher oil in the effluent
 – Potential increase in overhead corrosion
 – Higher risk for high temperature corrosion
Outline

• Why bother?
• What is different?
• Program strategies employed by Baker Petrolite
• Case histories
Desalting: Tools used for Program Optimization

• Review of operational variables impacting performance
 – Tank farm practice
 – Slop addition practice
 – Wash water
 – Mixing energy
 – Mud wash practices

• Evaluation of feedstock
 – EDDA screening
 – Asphaltene stability study using ASIT™ technology
Crude Oil Management

- Crude oil tank farm pre-treatment
 - Does not require water draw in tank
 - Improves solids control
 - Stabilizes asphaltenes
 - Reduces oil under carry

- Proper slop handling
 - Segregation
 - Injection practice
 - Treatment
 - Dehydration
 - Solids removal
Wash Water

- Injection rates
 - 6 to 9% for improved dehydration and solids removal
- Wash water pH
 - 5 to 8 acceptable

Naphthenic acids impact on oil/water emulsion stability at various pH.
Mixing Energy

• Wide range of mixing energy is used
• Determining best setting is key
 – Dehydration and salt removal
 – Solids removal
Mud Wash Practices

• Solids can rapidly build in desalter vessel
• Mud can harden with time
• Best to use recycled effluent water
 – Need mud wash pump
 – Don’t starve wash water
• Desired frequency is at least daily
 – Western Canadian experience
 • 15 minutes per shift
 • Continuous
Feedstock Evaluation

• Pre-screen blends, individual crudes
 – Bench top “EDDA” screenings for emulsion resolution speed, efficiency
 • Oil soluble emulsion breakers
 – Includes Baker Petrolite’s new XERIC™ Heavy Oil Demulsifiers
 • Solids wetting agents
 • Water soluble polymers, when required
ASIT Test Indicates Asphaltene Instability

• Some WCSB crudes and blends can contain unstable asphaltenes
 – High asphaltene bitumens
 – Paraffinic materials used to dilute bitumens

• Several potential problems
 – Precipitation in tankage
 – Desalter upsets
 – Fouling
 – Foaming

• Can be used to identify unstable blends
• Also used to screen most effective asphaltene stabilizing chemicals
ASIT Test Results

Additives can increase the stability of an oil

Unstable < 130 Moderately Stable 130-200 Stable >200
Corrosion: Crude Tower and Overhead System

- WCSB crudes can increase tower and overhead system corrosion potential in two key ways:
 - Non-desaltable chlorides in WCSB blends
 - Higher chloride loadings in the tower and overhead system
 - Low boiling organic acids from thermal degradation of high TAN crudes
 - Higher organic acid loadings in the tower and overhead system
 - Naphthenic acids also increase hydrolysis of inorganic chloride salts in the desalted crude
 - Both mechanisms increase neutralizing agent demand
 - Both mechanisms increase the risk of neutralizer-hydrochloride salt fouling and under-deposit corrosion
Corrosion: Tools Employed for Troubleshooting and Optimization
TOPGUARD Overhead Corrosion Control

• Review of Operational Data
 – Correlate effect of operational and crude slate changes
 • Non desaltable chlorides

• Review of Traditional Monitoring Methods
 – Identify variations in corrosion rates via coupons and probes

• Analytical Techniques
 – Compositional sample analyses to identify corrodents present
 – Metallurgy analyses of coupons to identify mechanism of attack

• Ionic Modeling Calculations
 – Ammonium and amine chloride salt formation risk
 – pH profile
 – Water wash requirements
Ionic Model Thermodynamic Simulations

- **Acid corrosion**
 - Dictated by pH
 - Most severe at dew point
 - Rigorous electrolyte simulation to determine pH profile

- **Under-salt corrosion**
 - Dictated by salt deposition
 - Salts are acidic, absorb water
 - Thermodynamic data for organic amine-HCl salts
High Temperature Naphthenic Acid Corrosion

- Can be a concern with bitumen blends
- Impact depends on characteristics of overall crude slate processed
- Several mitigation options have been used successfully with WCSB feedstocks:
 - Blending
 - Metallurgy
 - Chemical inhibitors
Use Conventional Approaches to NAC Control

• Assessment
 – Process equipment evaluation
 – Feedstock/process stream characterization

• Mitigation
 – Crude blending to TAN limit
 – Metallurgy upgrade
 – Chemical inhibition

• Surveillance/Monitoring
 – Design effective monitoring protocols
 – Use data to optimize corrosion management program
Outline

• Why bother?
• What is different?
• Program strategies employed by Baker Petrolite
• Case histories
WSCB Case History 1

- Refinery’s ability to process heavy Canadian crude limited
 - Poor dehydration
 - Poor brine quality
- Tested crude blend samples to select best chemical treatment program
 - Asphaltene stabilizer
 - Oil-soluble emulsion-breaking chemical
 - Solids wetting agent in wash water
Case History 1 Program Results

• More than doubled the amount of heavy Canadian crude being processed
 – 7.5 KBPD to 17.5 KBPD

• Maintained salt removal efficiency

• Dehydration performance maintained
Case History 1 Program Results

Salt Removal Efficiency

- Trial #1 WCSB up to 15 KBD
- Trial #2 WCSB up to 17.5 KBD
- Improper tank switch
Case History 1 Program Results Cont.

Second Stage Desalter A BS&W Out

Maintained Performance

Trial #1 WCSB up to 15 KBD
Trial #2 WCSB up to 17.5 KBD

1st Set BS&W Out
Second Stage Desalter B BS&W Out

Maintained Performance

Trial #1 WCSB up to 15 KBD
Trial #2 WCSB up to 17.5 KBD

2nd Set BS&W Out
WCSB Case History 2

• Refinery upgraded desalter for heavy Canadian crudes
 – Poor desalter effluent water quality
 – Low dissolved oxygen in WWTP
• Pre-screened crude blend samples to select chemical treatment program
 – Oil soluble emulsion-breaking chemical
 – Solids wetting agent in wash water
 – Polymer when needed
• Desalter operating variables optimized in the field
Program Results: D.O. in WWTP

Waste Water Treatment Plant Dissolved Oxygen

Before Baker Petrolite
- dissolved O2
- Competitive average
- Baker Petrolite Average

After Baker Petrolite
- dissolved O2
- Competitive average
- Baker Petrolite Average

Dissolved Oxygen, ppm

Daily
WCSB Case History 2 Program Results

• Can run 250 PTB solids in crude charge
 – Salt removal and dehydration maintained
• Filterable solids removal remained at 80%
• WWTP operation improved
 – COD reduced
 – DO increased
 – No longer affected by oily brine
• Overall chemical usage dropped nearly 50%
WCSB Case History 3
Crude Oil Pretreatment Program

• Desalter upsets when processing heavy oil sands crude oil
 – Up to 3,000 ppm oil in desalter effluent water
 – Caused problems in WWTP

• Implemented crude oil pretreatment program
 – With pretreatment, effluent water oil content decreased to an average of 140 ppm
 – Improved WWTP operation
 – Odor emissions reduced
 – Filterable solids removal efficiency increased from 27% to 42%
WCSB Case History 3 - Program Results

Desalter Effluent Water - Before Pretreatment Program

Desalter Effluent Water - After Pretreatment Program
WCSB Case History 4
Asphaltene Stabilizer

• Desalter problems
 – High current draw
 – Water carryover
 – Solids, oil in desalter effluent water
 – WWTP overloaded

• Root cause analysis
 – Asphaltene destabilization
 – Sour Canadian crude, high in asphaltenes
WCSB Case History 4
Chemical Treatment Recommendations

• Continuous crude oil pretreatment using surfactants
• Used asphaltene stabilizer for heavy sour crude shipments
• Continued emulsion breaking chemical use on crude unit, but at reduced rate (~50% reduction)
WCSB Case History 4
Program Results and Benefits

- Allowed more aggressive crude blending
- Significant reduction in oil under-carry
- WWTP no longer burdened with oily effluent water
- Increased unit throughput
- Significant return on incremental chemical treatment program investment
Rising to Canadian Crudes Challenges

• Many realized benefits for improving your Canadian crude processing capabilities
 – Reduced feedstock costs
 – Increased feedstock flexibility
 – Increased unit throughput
 – Improved refinery profitability

• These benefits are being achieved while minimizing operating risk
 – Maintain unit integrity and reliability
 – Ensure product quality
 – Ensure environmental compliance