Bringing Smart Technology to Centrifugation

LK Industries
October 13, 2016
LK Industries

- History and Milestones
 - Founded in 1930 as LK Pump and Valve Company
 - Built first centrifuge in 1950 – “The Melton”
 - Launched Transport Series in late 80’s
 - Built first Lab Centrifuge in 1999 in partnership with Exxon
 - Acquired Miller and Weber in 2016
 - Developed first SMART Transport Centrifuge: 2016+

- About Us
 - Located in Houston, TX
 - 25 Employees
 - Five Core Product Lines
 - Centrifuges, Heaters, Gaging Accessories
 - Glassware (tubes, thermom, hydrom), 17025 Calibrations
Field BS&W

- Current Approach:
 - Onsite centrifugation of sample by drivers
 - Suggested Method: API 10.4
 - Duration: 5 min test, RCF: => 500
 - Temperature: 140°F ± 5°F; samples within 15°F
 - Tolerance: one subdivision, minimum 2 tests, 2 samples
 - Results manually read and reported

- Limitations of Current Approach:
 - Visual inspection prone to subjectivity and error
 - Limited traceability of testing results
 - Lack of conformance to test methods
What Must Be True?

- Business Case
 - Material consequence to inaccurate readings
 - Cost of solution must less than cost of issue

- Field Acceptance
 - Easily deployable
 - Must not impede efficiency

- Improve Outcomes
 - Testing traceability
 - Data analysis
 - Reduction in human error
A New Approach

SMART Centrifuge
- Tests and processes data

Application
- Provides user interface and connectivity

Online Database
- Stores and provides data access
The SMART Centrifuge

- Utilize a camera and processor to read BS&W from field samples
- Transmit data from the unit to the app
- Confirm tests are being run onsite and in accordance with API standards
Hardware
Detection Process
The System

- **SMART Centrifuge**: Tests and processes data
- **Application**: Provides user interface and connectivity
- **Online Database**: Stores and provides data access
The App

Smart Centrifuge Testing

User Name
@lk-ind.com

Password
......

Create New Test

Well/Field Name
Group 1

Test Name *
Please enter test name

Type of Test *
Select Test Type

START TEST
Begin Testing

SMART Centrifuge is confirming proper testing conditions

Test is running in accordance with selected test method
View Results

Test Completed. Waiting for Result.

Stop Testing

First Test: #4563

Location
Latitude 40.058
Longitude -74.456

Date & Time
01 / 18 / 2016
14:00 PM

Test Duration
15 Mins
30 Seconds

Temperature
25 °F

Centrifuge Speed
250 RPM

Water Content
0.26 %

Sediment Content
0.13 %

Notes

Notes to be entered by User

Accept Result
Re-Do this Test
The System

SMART Centrifuge
Tests and processes data

Application
Provides user interface and connectivity

Online Database
Stores and provides data access
Online Database

Test Sets

Export All Export Visible/Filtered Export Selected

<table>
<thead>
<tr>
<th>Well/Field Name</th>
<th></th>
<th>Well/Field Date</th>
<th></th>
<th>User Email</th>
<th></th>
<th>View Test Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lk</td>
<td></td>
<td>2016-08-01 22:08:08</td>
<td></td>
<td>@k-ind.com</td>
<td></td>
<td>View Tests</td>
</tr>
</tbody>
</table>

Test sets are presented in a summary view with the ability to export raw data.
Online Database

Test Name: Test 3

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Test Duration</th>
<th>Notes</th>
<th>Speed</th>
<th>Temperature</th>
<th>Water Content</th>
<th>Sed. Content</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/10/2016, 10:33:24 AM</td>
<td>5 Mins</td>
<td>35 Seconds</td>
<td>2,338.00 RPM</td>
<td>138.00 °F</td>
<td>0.78</td>
<td>0.04</td>
<td>29.6955027</td>
<td>-95.3049004</td>
</tr>
</tbody>
</table>

Tube 1
- Water Content: 0.94
- Sed. Content: 0.07

Tube 2
- Water Content: 0.62
- Sed. Content: 0.01

Select Type: Temperature

![Temperature Graph](#)
Field Testing Overview

Basics

- Testing with 2 partnering companies in Southern US
- Conducted 6 week trial beginning August 08, 2016
- Established weekly check-ins with drivers and management
- Monitored field testing live via website throughout testing period
- Drivers recorded “traditional” readings during test to help validate accuracy.

Goals

- Proof of concept – demonstrate the idea
- Test Design – field ruggedness and user acceptance
- Accuracy – “smart readings” vs manual readings
- Limitations – learn what needs improvement in next phase
- Verification – confirm industry demand
Key Takeaways

- Areas for improvement
 - Crude Oil Type
 - Water levels difficult to detect in light crudes
 - Difficulty with “cloudy” samples
 - Convention vs Stated Method
 - Further investigation on which methods are preferred
 - Analyze if various/customized methods should be added
 - Equipment Limitations
 - Cushion staining → improper lighting
 - Positioning/process time → need to improve efficiency
 - Images → must ensure proper quality and clarity
Key Takeaways

- What worked well?
 - User Interface – intuitive and well designed
 - Online Database - access is highly valued
 - Images, location, uniformity
 - Network Communication – worked as intended
 - Ruggedness – minimal failure
 - Kill Switch – valuable in the field
With correct crude type, results were reasonably accurate.
Moving Forward

Focus Points
- Evolve software for a broader range of crude types
 - lighting, shields, tubes...
- Customize/Automated Verification
 - Correlate GPS coordinate to field/well name
 - Bridge software to connect with customer’s ticketing system
- Ensure database images are extremely high quality
- Continue evaluating ruggedness - weather proofing, water hazards, etc
- Investigate market interest in “manual” mode
- Update temperature measurement (add density?)

Commercialization in 2017
Thank you!

- A SPECIAL THANKS to our Testing Partners and COQA!
- LK Ind: Eric Calderon, Dwan Thomas, Frank Ragan
- Engineering Support: ErdosMiller
- Application Support: Saviance

- Questions?