Challenges of Desalting Canadian Crudes

Gary W. Sams
Director R&D
Heavy Oil PFD

- Smallest water drops
- Mostly emulsified
- Solids stabilized

- Oil lighter than water
- High inlet water cut
- Oil internal
- Temperatures < 143°C

FWKO

- 25% Oil
- 75% Water

Separator

- 72% Oil
- 28% Water

Gas

Treater

- 99% Oil
- 1% Water

- 90% Oil
- 10% Water

Gas

FWKO

- 25% Oil
- 75% Water

Separator

- 65% Water

** Treater**

- 9% Water

Crude Oil Quality Association
Degassing / Dehydration

Inlet

Gas

Oil

Dual Frequency

Collector

Electrodes

HiFlo Spreader

Water

Water

Crude Oil Quality Association
Cyclonic Gas Removal
Desalter Design Issues

Settling Rate = \frac{K(\rho_w - \rho_o)gd^2}{\mu}

\text{Temperature vs. Viscosity}

\text{Stoke’s Law}

E_c < \varepsilon \sqrt{\frac{\sigma}{d}}

\text{Chemical Treatment Program}

F_{\text{coalescing}} = \frac{KE^2r^6}{d^4}

\text{Emulsifying Factors}

\text{Water Solubility}
Solids & Oil in Effluent

Small micron particulates, crystalline salt, and heavy solids loads

Substantial asphaltene precipitation
Reverse Emulsion
16 API SAGD DilBit

Crude Oil Quality Association
Water Droplet Growth

Initial Droplet Distribution

Final Droplet Distribution

Droplet Diameter, microns

Droplet Population, %
Demulsifier Selection

Kuwait Oil - 25ºAPI

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Bottle Test</th>
<th>Electrostatic Bench Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water in Oil</td>
<td>BS&W</td>
</tr>
<tr>
<td></td>
<td>% By Difference</td>
<td>Measured %</td>
</tr>
<tr>
<td>Brand A</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Brand B</td>
<td>4.0</td>
<td>1.51</td>
</tr>
<tr>
<td>Brand C</td>
<td>4.8</td>
<td>1.51</td>
</tr>
<tr>
<td>Brand D</td>
<td>5.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Based on lab tests – Initial BS&W – 10%

Best Performance
Electrostatic Field Selection

Our Choices Include…

• AC – Conventional & Deep-Field
• DC Only (with refined products)
• Dual Polarity® - Combination AC/DC
• Modulated Dual Polarity®
• Electro-Dynamic Desalting®
• Dual Frequency®
AC Electrostatic Forces

Positive Forces & Velocities

Negative Forces & Velocities

- Electrostatic Voltage Field, \(V/ \text{m} \)
- Drag Force
- Dipole Force
- Drop Velocity
- Drop Spacing, \(S \)
- Drop Weight, \(W_D \)
- Vertical oil velocity, \(v_v \)
- Electrode #1
- Electrode #2

Droplet Radius, \(r \)
DC Electrostatic Forces

Positive Forces & Velocities

Electrostatic Voltage Field, V/m
Drag Force
Drop Velocity
Droplet Weight, \(W_D\)

Electrophoresis Force
Drop Spacing, \(S\)
Droplet Radius, \(r\)
Vertical oil velocity, \(v_v\)

Negative Forces & Velocities

Electrode #1
Electrode #2

Crude Oil Quality Association
Gradient Electrostatic Forces

- Positive Forces & Velocities
- Electrostatic Voltage Field, V/m
 - Di-electrophoresis Force
 - Drag Force
 - Vertical oil velocity, v_v
- Drop Velocity
- Drop Spacing, S
- Droplet Radius, r_D
- Electrode #1
- Electrode #2
- Negative Forces & Velocities
- Di-electrophoresis Force
- Droplet Weight, W_D

Crude Oil Quality Association
Net Electrostatic Forces

Positive Forces & Velocities

Di-electrophoresis Force

Electrostatic Voltage Field, V/m

Droplet Weight, W_D

Electrophoresis Force

Droplet Velocity

Drop Spacing, S

Droplet Radius, r

Drag Force

Vertical oil velocity, v_v

Di-electrophoresis Force

Electrode #1

Electrode #2

Negative Forces & Velocities

Crude Oil Quality Association
Electrostatic Coalescence

Net Drop Forces in Voltage Field

<table>
<thead>
<tr>
<th>Voltage Field</th>
<th>Dipole</th>
<th>Electrophoretic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direction</td>
<td>Force</td>
</tr>
<tr>
<td>Alternating Current</td>
<td>Oscillates</td>
<td>0.4 weight</td>
</tr>
<tr>
<td>Direct Current</td>
<td>Constant</td>
<td>0.4 weight</td>
</tr>
</tbody>
</table>

Crude Oil Quality Association
AC/DC Electrostatic Field

Bulk Water Removal

Crude Oil Quality Association
Desalter Hydraulic Efficiency

Crude Oil Quality Association
Excessive Oil Conductivity

Temperature, F

Conductivity, nS/m

Typical
High

Crude Oil Quality Association
Heavy Oil Dehydrator Performance

Ref: SPE Paper 97786

Crude Oil Quality Association

Solid Curves Predicted by Electrostatic Dehydrator Computer Model

Oil API – 21
TAN - 4

Outlet BS&W (%)

Oil Flux (bopd/sf)

AC
Dual Polarity
Modulated Dual Polarity

Field AC Dehydrator @ 239 F
AC Dehydrator @ 219F
AC/DC @ 218F
Modulated AC/DC @ 220F
Bimodal AC/DC @ 220F

Crude Oil Quality Association
Technology Retrofit
A Commercial Installation

Gravity = 12ºAPI

<table>
<thead>
<tr>
<th></th>
<th>Before Retrofit*</th>
<th>After Retrofit*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology:</td>
<td>Dual Polarity</td>
<td>Dual Frequency</td>
</tr>
<tr>
<td>Temperature:</td>
<td>220ºF</td>
<td>200ºF</td>
</tr>
<tr>
<td>Oil Flow:</td>
<td>4000 BOPD</td>
<td>9200 BOPD</td>
</tr>
<tr>
<td>Outlet BS&W:</td>
<td>1%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Data is per vessel. There are four vessels.
SAGD - Dilbit Desalting Pilot Results

Process Parameters:
- Dilbit API: 16 °, Temp: 280°F, Flux: 70 bopd/ft²

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tech.</th>
<th>Feed</th>
<th>Outlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BS&W, %</td>
<td>Salt, ppm Cl⁻</td>
</tr>
<tr>
<td>1</td>
<td>AC</td>
<td>5.8</td>
<td>220</td>
</tr>
<tr>
<td>2</td>
<td>DF</td>
<td>0.4</td>
<td>6</td>
</tr>
</tbody>
</table>

- Wash Water: 5%
- Recycle: 5%
- Valve DP: 10 psi

Mixing Efficiency = 25%
Desalter Technology Comparison

Technology vs Salt Removal Efficiency

<table>
<thead>
<tr>
<th>Technology</th>
<th>Inlet Salt</th>
<th>Outlet Salt</th>
<th>BSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>258</td>
<td>41</td>
<td>0.5</td>
</tr>
<tr>
<td>AC-pAC</td>
<td>258</td>
<td>12</td>
<td>0.4</td>
</tr>
<tr>
<td>DF</td>
<td>211</td>
<td>6.3</td>
<td>0.4</td>
</tr>
<tr>
<td>EDD-EDD</td>
<td>200</td>
<td>3.2</td>
<td>0.4</td>
</tr>
<tr>
<td>DF-DF</td>
<td>210</td>
<td>2.8</td>
<td>0.3</td>
</tr>
<tr>
<td>EDD-DF</td>
<td>200</td>
<td>2.4</td>
<td>0.3</td>
</tr>
<tr>
<td>DF-EDD</td>
<td>210</td>
<td>2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Crude Oil Quality Association
Conclusions

Heavy Canadian crudes pose unique challenges:

- High Oil Conductivities
- Asphaltene Precipitation
- High Solids Loading
- Reverse Emulsions
- Increased Interface Rag
- Poor Effluent Water Quality